Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Abstract Since the first isolation of graphene, the importance of van der Waals (vdW) interactions has become increasingly recognized in the burgeoning field of layered materials. In this work, infrared nanoimaging techniques and theoretical modeling are used to unravel the critical role played by interfacial vdW interactions in governing the stability of violet phosphorus (VP)—a recently rediscovered wide bandgap p‐type semiconductor—when exfoliated on different substrates. It is demonstrated that vdW interactions with the underlying substrate can have a profound influence on the stability of exfoliated VP flakes and investigate how these interactions are affected by flake thickness, substrate properties (e.g., substrate hydrophilicity, surface roughness), and the exfoliation process. These findings highlight the key role played by interfacial vdW interactions in governing the stability and physical properties of layered materials, and can be used to guide substrate selection in the preparation and study of this important class of materials.more » « less
- 
            Abstract Violet phosphorus (VP) is garnering attention for its appealing physical properties and potential applications in optoelectronics. A comprehensive investigation of the photodegradation and thermal effects of exfoliated VP on SiO2/Si substrates is presented. The degradation rate of VP is strongly influenced by the wavelength and exposure duration of light. Light illumination of VP above the bandgap leads to faster degradation, attributed to interactions with reactive oxygen species. Power‐dependent photoluminescence (PL) measurements at low temperature (T = 4 K) show neutral exciton (X0) and trion (T) intensities linearly increase with excitation power, while the energy difference between peak energies decreases. The T/X0spectral weight ratio increases from 0.28 at 300 K to 0.69 at 4 K, suggesting enhanced T formation due to reduced phonon scattering. Temperature‐dependent Raman is used to investigate the phonon properties of VP. Tracking peak positions of 9 Raman modes with temperature, the linear first‐order temperature coefficient is obtained and found to be linear for all modes. The results provide a deeper understanding of VP's degradation behavior and implications for optoelectronic applications.more » « less
- 
            Intrinsic defects and their concentrations in hexagonal boron nitride (h‐BN) play a key role in single‐photon emission. In this study, the optical properties of large‐area multilayer h‐BN‐on‐sapphire grown by metal‐organic chemical vapor deposition are explored. Based on the detailed spectroscopic characterization using both cathodoluminescence (CL) and photoluminescence (PL) measurements, the material is devoid of random single‐point defects instead of a few clustered complex defects. The emission spectra of the measurements confirm a record‐low‐defect concentration of ≈104 cm−2. Post‐annealing, no significant changes are observed in the measured spectra and the defect concentrations remain unaltered. Through CL and PL spectroscopy, an optically active boron vacancy spin defect is identified and a novel complex defect combination arising from carbon impurities is revealed. This complex defect, previously unreported, signifies a unique aspect of the material. In these findings, the understanding of defect‐induced optical properties in h‐BN films is contributed, providing insights for potential applications in quantum information science.more » « less
- 
            Abstract Metamaterials and metasurfaces operating in the visible and near‐infrared (NIR) offer a promising route towards next‐generation photodetectors and devices for solar energy harvesting. While numerous metamaterials and metasurfaces using metals and semiconductors have been demonstrated, semimetals‐based metasurfaces in the vis‐NIR range are notably missing. This work experimentally demonstrates a broadband metasurface superabsorber based on large area, semimetallic, van der Waals platinum diselenide (PtSe2) thin films in agreement with electromagnetic simulations. The results show that PtSe2is an ultrathin and scalable semimetal that concurrently possesses high index and high extinction across the vis‐NIR range. Consequently, the thin‐film PtSe2on a reflector separated by a dielectric spacer can absorb >85% for the unpatterned case and ≈97% for the optimized 2D metasurface in the 400–900 nm range making it one of the strongest and thinnest broadband perfect absorbers to date. The results present a scalable approach to photodetection and solar energy harvesting, demonstrating the practical utility of high index, high extinction semimetals for nanoscale optics.more » « less
- 
            Abstract From a fundamental science perspective, black phosphorus (BP) is a canonical example of a material that possesses fascinating surface and electronic properties. It has extraordinary in‐plane anisotropic electrical, optical, and vibrational states, as well as a tunable band gap. However, instability of the surface due to chemical degradation in ambient conditions remains a major impediment to its prospective applications. Early studies were limited by the degradation of black phosphorous surfaces in air. Recently, several robust strategies have been developed to mitigate these issues, and these novel developments can potentially allow researchers to exploit the extraordinary properties of this material and devices made out of it. Here, the fundamental chemistry of BP degradation and the tremendous progress made to address this issue are extensively reviewed. Device performances of encapsulated BP are also compared with nonencapsulated BP. In addition, BP possesses sensitive anisotropic photophysical surface properties such as excitons, surface plasmons/phonons, and topologically protected and Dirac semi‐metallic surface states. Ambient degradation as well as any passivation method used to protect the surface could affect the intrinsic surface properties of BP. These properties and the extent of their modifications by both the degradation and passivation are reviewed.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
